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Thermodynamics of the quasiequilibrial 
growth of crazes 
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By comparing the morphology and physical properties (averaged over the scale of 1 to 
10/~m) of a crazed and uncrazed polymer, it can be concluded that crazing is a new phase 
development in the initially homogeneous material. The present study is based on recent 
work on the general thermodynamic explanation of the development of a damaged layer 
of material. The treatment generalizes the model of a crack-cut in mechanics. The 
complete system of equations for the quasiequilibrial craze growth follows from the 
conditions of local and global phase equilibrium, mechanical equilibrium and a kinematic 
condition. Constitutive equations of craze growth-equations are proposed that are between 
the geometric characteristics of a craze and generalized forces. It is shown that these 
forces, conjugated with the geometric characteristics of a craze, can be expressed through 
the known path independent integrals (J, L, M,). The criterion of craze growth is 
developed from the condition of global phase equilibrium. 
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1. Introduction 
The phenomenon of crazing in glassy (and in some 
crystalline) polymers has been reported in many 
studies. A recent review can be found in a mono- 
graph by Kaush [ 1 ]. 

Crazing is studied on different scale levels. Mul- 
tiple works on morphology show different 
mechanisms of craze origination and development 
up to the scale of about 100 A. Development of  a 
consistent statistical description of the phenom- 
enon from the microscale to a macroscale is prob- 
ably an unsolvable problem at the present time. 
The reasons for the difficulty are different inter- 
pretations of  the observed phenomena, as well as 
the lack of technical means for studying the 
relations between stress and strain on submicron 
levels. 

Nevertheless, it is possible to describe the 
macroscopic phenomenon of craze growth by 
using the idea of continuum and the general prin- 
ciples of  thermodynamics, which are independent 
of micromechanisms of an observed phenomenon. 
It is worth mentioning that the laws of thermo- 
dynamics can be applied to rather large systems. In 
the case of  crazing, there is a condition of 
statistical homogeneity of microheterogeneous 
craze structure that justifies the use of thermo- 
dynamic methods. Following the method of 
estimation of scale of statistical homogeneity [2], 
it was found that craze material can be considered 
homogeneous matter from the scales 1 to 10/lm. 
Characteristics of  the real structure averaged over 
these scales serve as the thermodynamic para- 
meters of  that state. 

Phenomenological approaches, which consider 
craze material as a homogeneous medium, have 
been developed in several papers [3-8] .  The ideas 
of  fracture mechanics have been used in these 
studies without analysis of the thermodynamic 
laws upon which mechanical models of the crack- 
cut are founded. However, other studies that deal 
with heat evolution during the growth of the crack 
with the craze ahead [9, 10] provide convincing 
evidence that craze growth cannot be regarded as 
a purely mechanical phenomenon. Moreover, the 
specific structure of  polymer material and the 
specific change in morphology during craze forma- 
tion should be reflected in a craze macromodel. 

A craze in an amorphous polymer consists of an 
orientated polymer which differs from the initial 
isotropic material in structure and physical proper- 
ties (e.g. the modulus of  elasticity, the coefficients 
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of thermal expansion, etc.) and is separated by a 
distinct boundary. 

A part of  a craze in polystyrene film is shown 
in Fig. 1, where the scale represents the craze 
material as a homogeneous continuum separated 
by a distinct boundary from the native material. 
By comparing the morphology and physical 
properties (averaged over the scales 1 to 10/lm) of 
the craze and the native material of  a polymer, we 
can conclude that they are different phases of  the 
material. Indeed, that part of  a thermodynamic 
system that differs from other parts in its physical 
properties is by definition a new phase. In the 
present work, a thermodynamic model in which 
crazing is considered as a new phase development 
in the initially homogeneous material is proposed. 
Our study of phase growth under uniform exten- 
sion of a specimen differs from conventional 
studies of the phenomena of phase transition. 
Craze growth is expected as a result of  disturbance 
of global (and not local) equilibrium in the com- 
posite system. The growth of the new phase is 
specifically anisotropic in this case. 

Thermodynamic investigation of new phase 
growth in an initially homogeneous material in 
relation to the problem of fracture in solids has 
already been conducted (Chudnovsky, et al.) [11, 
12]. For the craze model, the results of  that work 
are used, taking into consideration the features of 
craze material. 

The growth of a craze in isothermic conditions 
will be considered. This assumption does not res- 
trict the generality of  the approach. In a quasi- 
equilibrium approach, different types of mechan- 

Figure 1 Micrograph of an area of a craze in a quenched 
PS film (2/~m thick). The craze is separated by a distinct 
boundary. 



ical, heat (temperature), and phase (chemical) 
equilibria exist on the boundary which separates 
the two phases. The equation of phase equilibrium 
is the new element which is added to the existing 
mechanical models and the craze is considered as a 
new phase. Craze growth is a result of disturbance 
of phase equilibrium, not mechanical equilibrium. 

When there is a disturbance of phase equilib- 
rium, the difference in chemical potentials plays 
the role of  a thermodynamic force that brings on 
the growth of a new phase. Such phenomena are 
characterized by special kinetic equations. 

A new phase can result also from quasi-equilib- 
rial growth. The phase equilibrium holds at any 
moment of time. The craze boundary displace- 
ment is controlled by bringing in or taking off the 
energy relevant to the hidden (latent) energy of 
the phase transition. In the present work, a model 
of quasi-equilibrial phase boundary movement is 
developed. 

If  heat is absorbed during phase transition, the 
energy condition is essential. If heat evolves during 
phase transition (this apparently takes place during 
development of a craze), the energy condition 
plays a secondary role. For an isothermal process, 
the condition is satisfied automatically. In this 
case, the equation for the evolution of the phase 
boundary follows directly from the condition of 
phase equilibrium. 

Section 2 gives a short description of the 
general thermodynamic method of analysing a 
two-phase medium with a growing internal phase, 
and develops an equation of craze equilibrium in a 
thin film. Experimental data on craze morphology 
are used in the derivation of the equation. It is 
shown that the condition of constant stress along 
the active zone boundary (the part of  the bound- 
ary where the phase transition takes place) follows 
from the condition of local phase equilibrium. 

Section 3 develops a complete system of equa- 
tions for the quasi-equilibrial craze growth. The 
length of the craze, the length of the active zone 
and the stresses along the inert zone (the part of 
the craze where there is no phase transition)are 
considered as the independent craze character- 
istics. The stress (or strain) along the specimen sur- 
face is the only external parameter controlling 
craze growth. The stress along the active zone 
boundary is a characteristic of the material. The 
complete system for these independent equations 
follows from the conditions of phase equilibrium, 
mechanical equilibrium and a kinematic condition. 

The analysis and the solution for the system are 
given in Section 4. 

2. Equation of phase transition for a solid 
with a craze 

The simplest model for the physical concept of 
craze growth described above is apparently, a two- 
phase perfectly elastic system (a craze-inclusion is 
an anisotropic elastic solid). The irreversibility of  
the whole process is due to the transformation of 
the native elastic material into the new anisotropic 
one, along a part of the craze boundary. 

In accordance with the general principles of 
thermodynamics, we assume that a local equilib- 
rium exists, so that the thermodynamic para- 
meters of the state and the conventional relation- 
ships between these parameters hold at any point 
of  continuum modelling the real body. As usual, 
the properties of  a continuum point are deter- 
mined as the average properties of a volume of the 
real material. The volume should be large enough 
to be comparable with the characteristic structural 
elements of the real material so that the thermo- 
dynamic limit will hold. On the other hand, the 
entire system should be small enough to be com- 
parable with the dimensions of the specimen 
material in order to eliminate boundary effects. 
According to other studies [3 -5] ,  the morphology 
indicates that the characteristic size of  the import- 
ant structural elements (pores, craze nuclei and 
fibrils) is of the order of 200 to 500 A. The struc- 
ture becomes statistically uniform when the size of 
these elements is of the order of 10/~m. A rigorous 
definition of characteristic volume is given in [2]. 

Elastic stress tensor, a, or elastic strain tensor, 
e, and absolute temperature, T, can be assumed to 
be the parameters characterizing the elementary 
volume, {o, T} or {e, T}. According to the principle 
of local equilibrium, all the densities of thermo- 
dynamic state functions for an elastic medium are 
expressed by these parameters. 

For simplicity, only the isothermic process will 
be  considered. The densities of  Helmholtz's free 
energy f(e,  T) and thermodynamic potential 
(Gibb's free energy) g(o, 7) are expressed as fol- 
lows: 

f(e, 73 = f0(T) +�89 (1) 

g(cr, T) = f - -  o :e  = fo(T')-- �89 -1 :o. (2) 

Here the colon denotes the internal tensor multi- 
plication operation (if Oo~ and e ~  are the matrices 

d e f  . 

of tensor o and e components, then a: e = (aa~ar 
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Figure 2 (a) Development  of an inclusion of new phase in a plate under tension. (b) The rates of displacement along a 
part of the inclusion (craze). 

C is the fourth rank tensor of the elastic moduli, and 
fo is the free energy density of the material in its 
natural state. 

Normally, when there are no structural changes, 
fo is a constant and is not taken into consideration. 
However, this part of free energy becomes essential 
when structural changes are described. 

The concept of global equilibrium implies that 
the time of phase transition along the phase 
boundary is negligible, so that the thermodynamic 
equilibrium of the two-phase system as a whole is 
fulfilled at any moment of time. Mathematically, 
thermodynamic equilibrium means the minimum 
of a thermodynamic potential, G, for the system 
as a whole, if external loads, P are given on the 
body surface, 2;, or the minimum of the Helm- 
holtz free energy, F for the system as a whole if 
displacements, u are given on E. In mechanical 
experiments consideration was given mainly to 
these two cases. 

Let V represent an area occupied by a solid 
body, V1 represent the sub-area occupied by un- 
crazed material and V2 represent the sub-area 
occupied by the new phase i.e. craze (see Fig. 2a). 
The characteristic function of craze area, • can 
also be introduced, such that 
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10 if x e V2 
X(x) = i fxeVl '  (3)  

and express F and G as follows 

F = ~,, {[1 - X(X)] [fo,(7) + �89 e :C1 :el 
'\, 

+ • +�89 (4) 

Yv {[1 - -  X(X)] [ f o l ( T )  G + �89 

+ • + l o :G~ :o ]}dV.  (5) 

Here the subscripts 1 and 2 show the native and 
craze materials, respectively. 

Usually, the equations of mechanical and 
thermal equilibrium follow from the principle of 
minimum F or G (depending on the problem). In 
this case, one more equation is necessary-the 
phase equilibrium equation: 

--~;~:~i• IT= co~t~tc~ = 0 (6) 

Dr 

~G~x 
~X P = constant 

T = cons tant  

= 0.  (7) 



Variation of the area (V=) is naturally deter- 
mined by a vector (v) of the displacement of the 
boundary (a V=)points. Therefore, a variation of the 
characteristic function X can be expressed as 

6X(x) = v~-8~(aV~). (8) 

Here 6a(OV:) is the vector f-function localized on 
the boundary between V~ and V2 and is defined 
by the condition for any finite function ~0 

fv ~2(x)'6c~(OV)dV = fav~(x ) "na dI;. (9) 

Here na are the components of the vector of the 
external normal to 3V, and dZ is an element of 
the surface 0 V (an arch element for a two-dimen- 
sional problem). Variations o f F  and G are 

6F = fv [(f~-- f~)v~ (10) 

fiG = fv [(gz--gl)ve~Sc~(OV~)ldV. (11) 

To make these expressions more concrete, we 
return to our observations of craze growth and 
emphasize the important evidence. Craze thick- 
ness remains small compared to the craze length 
for a reasonably well-developed craze. New native 
material transforms into craze material [16-19] 
along part of the boundary behind the craze tips. 
We will call this part of the craze an active zone. 
Therefore, the displacement vector, v (displace- 
ments are considered in the Lagrange coordinate 
system, "frozen" in the medium) differs from 
zero only along this part of the boundary. We 
account for transformation of the active zone of 
the craze growth as follows: isotropic extension 
and deformation, rotation with respect to the 
geometric centre, and shift of the position of geo- 
metric centre (centre translation). Then the dis- 
placement vector, v of point, ~, of the active 
zone boundary presents itself as the linear com- 
bination of the displacements corresponding to 
the elements of transformation (Fig. 2b) 

+ e(~)~e + o [(Oq. (12) 

Here ek~ is the alternating tensor; subscript k - 3 
corresponds to the out-of-plane axis (summation 
over the repeating subscripts is conventional); ~ is 
a radius vector of an arbitrary active zone bound- 
ary point in the coordinate system with the origin 
in lc; vc~(le) are the components of the vector of 

translation of the centre of the active zone; o~ is 
the rotation vector (the vector is normal to the 
plane of the film); X is the expansion coefficient; 
e(a,~) is the symmetrical tensor of second rank 
with the trace equal to zero and reflects the 
deformation of the active zone. 

From Equations 10 and 11, taking into account 
Equations 9 and 12, we obtain 

6F = va~zOe: --f,)nadZ + e~o~w~ fx(f~ --f ,  ) 

x ~o~n~dZ + X fJf~ --f~)~c, no, dZ 

+ e~of,(f= --f,)~c~n~dZ (13) 

(~G = Vg~f ,(g 2 --gl)no~d~-I-6k.~G.~ k ~ 72 - -g l )  

x ec, ncdZ + X~(g2 --gl)~c~nadZ 

+ ec~r ~ (g= - gl)~anadZ. 

As it has been shown [12] 

f g(i)na d~ 

(14) 

= fp(i)(f(iin,~- a~n~u.r~ ) dip ~ j~i)  

(15) 

ekce# f~g(i)~an~ d1~ : eka~ f,f(i)~an# dZ 

= ek~ fr(i)(~t3naf(i)- aT~uT,a) dP - L~ i) 
(16) 

f~ g(i)~ana dZ = f~ f(i)~na dZ 

= f r  (f(i)~ana -- ~aoo.~n.yu~,~) = M O) 
O) 

(17) 

(1 -- 6.~)~g(i)~o~n~ dZ = (1 -- 6c~)~r(i)fi~c~n ~ dE 

: (1--6c~) fp(r(f(i)~an~--~ao~.yn.ru~,~ =-- N~. 
(18) 

Subscripts ( i )=  1,2 correspond to uncrazed and 
crazed material, respectively. Subscripts aft,7,6 = 
1,2. 
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The notations J, L, M correspond to accepted 
[20, 21] notation of known path independent 
integrals. The final form of Equations 10 and 11 
is the same 

8G = va(le)(J ( ' )  - J(2)) + r 

+ X(M (') --M (2)) + e~(N~@ --N(~) = 0. 

(19) 

The differences (J (2) -- J O)), (L(2) _ LO)), 
(M(2)--/I'[ (1)) and (N<2)--N a)) play the role of  
generalized forces acting on heterogeneities in the 
elastic medium. 

The generalized force (Nt2)--N a)) which 
corresponds to deformation, has in general no in- 
variant presentation. 

The equation of phase equilibrium is in addition 
to the equations of force and temperature equilib- 
rium. 

3. The equations of craze growth during 
simple extension of thin film 

(a) It was concluded that the stresses are bounded 
and are constant along the phase transition bound- 
ary. This conclusion follows directly from the con- 
dition of local phase equilibrium at any points 
along the boundary 

g2(o, T) = g,(o, T). (20) 

This equation gives the relationship between the 
stresses and the temperature of phase equilibrium. 
Imagine that we change the stress (o) and the tem- 
perature (T), so that phase equilibrium holds. In 
other words, the increments of  Gibb's potential 
density for phase equilibrium are 

dg,= dg 2 (21) 
o r  

3g2 do + 392 d T =  3gl 3g 80 37 --~ do + ~--~dT. (22) 

Note that 
Og Og 

- e and - -  = - - S .  (23) 
aa 3T 

By substituting Equation 23 into Equation 22 and 
taking into account that the jump of deformation 
phase transition is expressed by the jump of the 
elastic moduli 

e ~  -- e ~  = [ C ~  o- m ] (24) 

we obtain (ignoring the jump of the stress) 

[C-~.y6]o.y~ do~  = -- ( $ 2 - - S , )  dT. (25) 
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If we assume that the jump of the elastic moduli is 
constant, and the jump of the entropy does not 
depend on stress, then Equation 25 can be 
integrated as follows 

- o :  [ C  -11 : o - -  Co - IS]  d r .  ( 2 6 )  
2 

Here Co is the value of a quadratic form of the 
stress at T = 0. 

This equation indicates the existance of a 
critical stress. This critical stress is a necessary but 
insufficient condition of phase transition. A con- 
dition of energy balance must be introduced for 
endothermal or exothermal phase transition. 

The assumption that the entropy jump is inde- 
pendent of  phase transition conditions has reason- 
able experimental foundation (Richardson rule, 
Trutton rule) [22]. The assumption that the jump 
of elastic moduli is independent of  temperature is 
provisional. Equation 26 is also provisional. How- 
ever, the conclusion that the critical stress of tran- 
sition a = oy exists is justified. The stress o v is a 
constant for an isothermal process. 

(b) Craze body (inert zone)- the  whole craze 
area behind the active zone-is  an anisotropic 
elastic material under stress o ( x ) <  a v. Spasmodic 
elongation of native material during the phase 
transition leads at a certain moment of c r a z e  
evolution to unloading of a zone beyond the craze 
tip zone. 

(c) The craze was considered as an inclusion of a 
new phase in the native elastic material (Fig. 2a). 
The stress field in a solid body with an inclusion is 
discussed elsewhere. Since for craze, 8/l is very 
small we make use of  the asymptotic representation 
of stress field at 6/I-+ 0 to characterize the stress 
field in the native material. Asymptotic stress field 
in the crack vicinity has in general the singularity 
1Ix~r, where r is the distance from the crack tip. 
Conditions to obtain bounded stress are investigated 
in the Dugdale model [23]. The asymptotic stress 
field is expressed as o = (K/x/r)~(O), where ~ is 
a function of a polar angle 0, and K is the stress 
intensity factor. 

. ,  I[l + x~ 

Here p(x) is the distributed load along the bound- 
a r y  (Fig. 3), and the condition for stress to be 
bounded is 

K = 0. (28) 

This equation gives one relationship for the follow- 
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Figure 3 The stress along the craze boundary models the interaction between uncrazed and crazed materials. 

ing variables: craze length 21; the length of  the 
active zone 2b; stress in the inert zone ob ; ay and 
cry. Since the last two variables are known, we 
obtain one equation bounding the three unknown 
functions l, b, and oh. 

(d) In the asymptotic representation, craze is a 
line with a jump of  elastic moduli localized on it 
and with two active zones behind the tips. We 
assume that craze growth consists o f  (a) translation 
of  the centre (Ic) and (b) similar expansion (X) o f  
the active zones along the axis X. This assumption 
implies that we should put w = 0, e ~  = 0, vl = 81e, 
v2 = 0, and X = 8bib in the phase transition Equa- 
tion 13 for the general case, as follows 

81c(j(2)_j~l)) + X(M(2)_MO)) = 0 (29) 

(e) The third equation can be obtained in 
various ways. It can be the equation of  continuity 
o f  displacement along the phase boundary. We 
cannot, however, obtain a reasonable equation of  
continuity in our model because only the first 
asymptotic of  the elastic solution and represen- 
tation of  the craze as a cut has been implemented. 

However, a kinematic condition that reflects 
the features o f  a growing craze can be used to 
formulate the missing equation. As has been 
shown earlier, the phase transition ceases on the 
boundary between the active and inert zones. The 
thickness of  the layer that is transformed into the 
craze stays constant from this moment.  The 

stresses along the active zone are determined by 
the condition of  local phase equilibrium and are 
constant. Therefore, the transversal dimension of  
the craze on the boundary between the active and 
the inert zones is constant during the entire pro- 
cess. 

The kinematic condition can be written as 
follows 

8*(It, b, oy, oh(x)) = 6;  = constant. (30) 

Here ob(x ) is the stress acting along the boundary 
of  the inert zone. 

At this point, we make additional assumptions. 
Because the crazed material is highly oriented and 
loosely connected in the transversal direction, we 
assume that the stress exists only in the direction 
"of loading. We assume also that the stress is the 
same along the boundary o f  the inert zone: 
ab = constant. This assumption looks reasonable, 
since the length o f  the inert zone is large compared 
with the thickness o f  the craze. 

We are substituting the resisting action of  the 
craze material for the forces distributed along the 
boundary (Fig. 3). The craze opening on the 
boundary o f  the active and inert zones can be 
represented as follows (see also Appendix 1, Equa- 
tion A4) 

8 ay--ab [ le+b]  
8* - ~ -~; (lc--b) ln~l--~_b). (31) 

41 



Substituting Equation 31 into Equation 30 con- 
fines the system of equations for quasi-equilibrial 
craze growth. 

4. Solution of the system of equations for 
quasi-equilibrial craze growth 

Equations 28, 29 and 30 make up a complete sys- 

tem. They can be rewritten as in Appendices 1 and 
2. (See Equations A3, A7 and A4 respectively). 

Finally, we have 

l e - - b ]  = (32) 7f[O~-- Ob~  os31o ,_o---;) 
(aof2--ayg~)dlc-- [aof2 + a)o,6;]  db = 0 

(33) 
8(oy -- ab) ( l c -  b)In  (lc + b] 

~EI \ l e - -  b] = 6~. (34) 

Let l - - l c  + b stand for one-half of the craze 
length. The system (Equations 32 to 34) character- 
izes the craze growth starting from the l 0 at which 
the inert zone appears. At this moment, we assume 

Ob=O. 
The system has a simple solution (for l ~> lo): 

l E 
- (35) 

l* oy -- o| 

l%-- = - - - -  (36) 

~r ( a= --a~ t (37) 
ob = 2 \ a r c s e c A ]  

where l* is a certain characteristic length 

( ~ - -  2 arcsecA)  (38) 
l* = 66 8A lnA 

The parameter A 

depends on (besides the oy) the density of free 
energy of the crazed material (f2), the value of its 
extension X, = a~/ao and the shape of the active 
zone (coefficient a); o ~ is the value of external 
stress at the moment the inert zone appears. 

The model considered above is essentially based 
on the asymptotic elastic solution for a plane with 
a cut. The asymptotic solution can be used for 
characterizing the growth of a developed craze if 
6/l ~ 1 ; therefore, the craze growth from its initia- 
tion until the moment of inert zone appearance is 
not discussed by this model. At that moment, 
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however, in accordance with the experimental 
data, the ratio 8 / l<  0.01. This evidence justifies 
the model. 

The proposed model of  new phase growth also 
permits a model to be set up for the initial stages 
of craze growth. The transversal dimension of a 
craze should be taken into account in this case. 
However, the model of  the unidimensional cut can 
still be used. For this purpose, not only the first 
asymptotic (with the singularity 1/r for the 
energy), but also the next (with the singularity 
1/r 2) should be taken into consideration. 

The law of quasi-equilibrial craze growth makes 
possible the solution of problems on the effective 
elastic properties of a material with crazes. It can 
be shown that the nonlinear experimental stress- 
strain diagram is described by the effective elastic 
properties of a two-phase system. The same result 
can be obtained for a single craze in a strip. This 
problem differs only in some details from that 
considered above. The problem of the effective 
properties of a specimen with multiple crazes is 
somewhat more difficult; however, the difficulties 
are only mathematical. 

We assume that the model of orientated phase 
transition developed above allows the plastic 
behaviour of polymer to be characterized in a wide 
range of conditions; in particular, in the case of 
shear bands and also in the case of time-dependent 
craze growth. 
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Appendix 1 
The stress state in a plane with the unidimensional 
inclusion under simple extension (Fig. 3) can be 
represented as a superposition of (1) the homo- 
geneous stress state o~ in the plane without the 
inclusion and (2) the stress state in the plane with 
the cut, substituting the inclusion. The boundary 
loads to be applied to the cut boundaries are 

=[ay - -a~  [ x l > l c - - b  (A1) 

p(x) t ~  ab Ix] < I e -- b. 

Note that (oy -- aoo) - (ay -- oh) -- (a~ -- ab), and 
the problem on the stress state in the material out- 
side the inclusion is reduced to Dugdale's problem 
[23] if we substitute o~ for (o~--: oh) and oy for 
( o ,  - o h ) .  



The substitution of  p(x) Equation A1 into 
Equations 27 and 28 gives 

:(' 1 f l e+b (O=--Ob) - ~  at 

1 f , - l e  + b O O ) J (  1 + ~] 
+ ~r--/~ J _ ,  _ b ( ~  - 1 _ - ~ 1  d~ 

1 rle + b  I +~ 

(A2) 

By integrating Equation A2, the following rela- 
tionship between Ic, b and Ob is obtained 

cos 71o_o---G/. 

This conformation gives the craze opening dis- 
placement on the boundary of  the active and inert 
zones directly from the Dugdale solution [23] as 
follows 

8 
6" = 6Ix=to_ b - rrEl(Or Oh) 

[ le+b] 
x ( /e- -  b) l n t / - ~ _  b ) .  (A4) 

Appendix 2 
To calculate the components  of  the thermo- 
dynamic forces j~2), j~O, M(2) and M O) in Equation 
29, we use the invariant representations [20] of  J 
and M for the native and craze material. 

The contour :Pl (Fig. 4) running just along the 
top and the bot tom of  the active zone was chosen 
and a circumference F'I that goes around the tip 
(singularity) was picked out as a contour. The 
projection of  nl of  a normal n on the axis xl  is 
equal to zero everywhere on 1-'1 except on F'I. Nor- 
mal stress on Pl everywhere on P '  is o ~ n ~ =  
o22 + o1~ = o22 = oy, due to the boundary con- 
dition (the condition of  local phase equilibrium). 

The translation along x 1 was considered. Then 

l I: 217 
Ic 1 

_1 x I 

\ 1 "  

Figure 4 The contour for calculation of the invariant inte- 
grals in the external area V. 

j~ l )=  2 fboy  .3xu~ dx + fr,(f, nk --  oat3nOua, k) d r ' .  
"J--b 

(A5) 

The second integral is calculated by using the 
stress and strain asymptotic  and is well known 

K12 
fr' (Ank -- oocn~u~,k) d r '  - (A6) 

2E~ 

where K1 is the stress intensity factor. The first 
integral is 

fb_bOY~xlU2 2 dx = 2or [u2(x)lx = b - u2(x)l~ = -  b] 

= ay6* (A7) 

where 6" is the craze opening displacement at the 
point of  separation of  the active and inert zones, 

J~') = oyS* +K__~ (A8) 
E1 

The first method described cannot be applied 
to the calculation of j[2) (the integral inside the 
area occupied by craze material) because the 
current field of  displacements is not the displace- 
ment  field of  an elastic transformation, but a 
superposition of  displacements due to phase trans- 
formation and the following elastic deformation. 
This is the reason we will pick out the contour F2 
that is parallel to the axis x2 (Fig. 5) for j~2) cal- 
culation. A normal (n) to the contour F2 has only 
one nonzero component  nl. The stress normal to 
this contour is an = oecn~ = 0, since we have 
assumed (Section 2) that the stress tensor a ~  for 
craze material has only one nonzero component  
0"22. Thus 

Figure 5 Contour for calculation of the invariant integrals 
in the internal area V:. 
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j~2) = fr2(f2nt ~ _ aocn#uc~,e) dF2 

Ct 0 

2 

(A9)  

The t he rmodynamic  force (M (2) - - M  (1)) corre- 

sponding to  the  t ransformat ion  o f  similar expansion 

can be  calculated in a similar manner  

M (1) = [ f l x ln l - -x loa#n~ua ,  l] dP 

' b  Ou2 = 2 - -x loy  dx 1 

[f l x l n l - x l o,~:n~u,~, i ] dP' = 

I 

Xl = b  

b 2 
= ayb6*+2cry(  u 2 d x l + b  K~.  (A10)  

~ - - b  E1 

The last t e rm is obta ined by subst i tut ing the 

asympto t ic  stress and displacement  fields in the 

integral along P '  and P '  tends to the point .  The 

expression 2 f_b  u2 d x l  is the area o f  the active 

zone  and can be represented as b6*~ where a is a 

coeff ic ient  that  depends on the shape o f  the active 

zone  (o~ = �89 for  a triangular shaped zone) .  

Finally,  

M (1) = (1 + a)(rvb6* + b K] . ( A l l )  
E1 

Calculat ion o f  the  integral M (2) along the con tou r  

F2 gives 

ao 

M (2) = f 2 ( - - b ) d x  2 = ~ f2(--b) dx2 = --f2bao. 
2 (A12)  

Therefore ,  Equa t ion  29 can be represented as 

fol lows 

-- oy6* -- K~ ] (aof2 + (1 + E1 i d l e -  or) 

x oy6* + E 1 ] d b  = 0. (A13)  
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